Jensen-Mercer Type Inequalities in the Setting of Fractional Calculus with Applications

نویسندگان

چکیده

The main objective of this paper is to establish some new variants the Jensen–Mercer inequality via harmonically strongly convex function. We also propose fractional analogues Hermite–Hadamard–Jensen–Mercer-like inequalities using AB integrals. In order obtain our results, we derive integral identities. To demonstrate significance present interesting applications special means and error bounds as well.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Jensen and Ostrowski Type Inequalities for General Lebesgue Integral with Applications

Some new inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for $f$-divergence measure are provided as well.

متن کامل

New classes of Lyapunov type inequalities of fractional $Delta$-difference Sturm-Liouville problems with applications

‎In this paper‎, ‎we consider a new study about fractional $Delta$-difference equations‎. ‎We consider two special classes of Sturm-Liouville problems equipped with fractional $Delta$-difference operators‎. ‎In couple of steps‎, ‎the Lyapunov type inequalities for both classes will be obtained‎. ‎As application‎, ‎some qualitative behaviour of mentioned fractional problems such as stability‎, ‎...

متن کامل

Ostrowski and Jensen Type Inequalities for Higher Derivatives with Applications

We consider inequalities which incorporate both Jensen and Ostrowski type inequalities for functions with absolutely continuous n-th derivative. We provide applications of these inequalities for divergence measures. In particular, we obtain inequalities involving higher order χ-divergence.

متن کامل

Jensen-Ostrowski type inequalities and applications for f-divergence measures

In this paper, we provide inequalities of Jensen-Ostrowski type, by investigating the magnitude of the quantity ∫ Ω (f ◦ g) dμ− f(ζ)− ∫ Ω (g − ζ)f ′ ◦ g dμ+ 1 2 λ ∫ Ω (g − ζ) dμ, for various assumptions on the absolutely continuous function f : [a, b] → C, ζ ∈ [a, b], λ ∈ C and a μ-measurable function g on Ω. Special cases are considered to provide some inequalities of Jensen type, as well as O...

متن کامل

Bounds for the Normalized Jensen – Mercer Functional

We introduce the normalized Jensen-Mercer functional Mn( f ,x, p) = f (a)+ f (b)− n ∑ i=1 pi f (xi)− f ( a+b− n ∑ i=1 pixi ) and establish the inequalities of type MMn( f ,x,q) Mn( f ,x, p) mMn( f ,x,q) , where f is a convex function, x = (x1, . . . ,xn) and m and M are real numbers satisfying certain conditions. We prove them for the case when p and q are nonnegative n -tuples and when p and q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2022

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14102187